A REMARK ON A MAXIMUM PRINCIPLE

BO YANG AND FANGYANG ZHENG

ABSTRACT. We review the maximum principle in our CAG 2013 paper, and correct some
inaccuracies in the proof.

Theorem 0.1. Let u(x,t) be a smooth solution o %;‘ = Au+ |[u? withp > 1 on R™ x [0,T)

with u(x,0) > 0. Then u(x,t) >0 for any (z,t) € R™ x [0, T
The proof of above relies on the choice of the following cut-off function. For fixed p > 1,

© is a fixed smooth cut-off non-increasing function such that ¢ = 1 on (—oo,1] and ¢ = 0 on

[2,4+00). and there exists C' > 0,
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3—p (‘02—17 < C.

(1) -0 <y <0,

Theorem 0.2 (Yang-Zheng). Let g(t) be a complete solution of the Kdhler-Ricci flow on C™
with U(n)-symmetry for t € [0,T). If the Riemannian sectional curvature of the initial metric
9(0) is nonnegative, so is that of g(t) for any t € (0,T].

Proof explained. Note that one can assume A, B,C > 0 everywhere on C" x [0,T]. Suppose
there is a point (zo,to) where 0 < tg < T where the sectional curvature is negative along some
real 2-plane, then D(zg,tq) = AC — B% < 0. By picking 79 > 0 small enough we may assume
that Ric(z,t) < "7%1 for any z € By, (z0,70) where By, (20,70) is with respect to g(to).

(2 (5~ a0 - B
= (5~ M)A+ (5, ~ A)CIA - 2B[(5 — A)B)

—2VA-VC +2|VBJ?
= A2C+ (n—2)BC + g(ﬂA +2B% — 2VA-VC + 2|VBJ%.

Let ¢ is a fixed smooth cut-off non-increasing function such that ¢ = 1 on (—o0,1] and ¢ =0
on [2,4+00). Moreover,

/" 72
(3) —d<y <0, “:Jﬂig < 128.
Define u(z,t) = @(%)D(z, t), where a > 0 will be a sufficiently large number.
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= o—[(Z —a)l|D 2 _AD| —2vp.- VD -
7 arg [(815 ) t} + S0[(875 ) } VeV v (arg)?

Denote Umin(t) = minyecnu(z,t), S0 Umin(to) < u(zo0,t0) < 0. Assume that there exists
(z1,t1) such that u(z1,t1) = minge(o,71Umin(t) < 0. Now we compute the right hand side of (4)
at the space-time point (z1,¢;). For simplicity, let us call it Q(z1,t1).

First of all, Lemma 8.3 from Perelman implies:

0 5(n—1)

) (57 = &) di (2. 20) = -

)

37“0

Date: Version of 02/05/2012.



2 BO YANG AND FANGYANG ZHENG

whenever dy, (z,z9) > ro.

The definition of (z1,¢;) implies Vu(z1,t,) = 0. Therefore VD = —%D and VA = L(VD+
2BVB — AVCO).

It follows from the F(x) function characterization of U(n)-invariant Kéhler metric and a
straightforward calculation that
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(6) V.B = %(A —2B), V,C= ;”(23 o).
(7) Qz1,t1)
w{AQC +(n—2)BC + %OM +2B% —2VA. V(O + 2|VB|2}
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= ¢|A%C+(n-2)B%C+ SCA+ 28]
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Note that at the point (z1,%1),

8) AQC+(n—2)B2O+gCQA+2B3 > [B2 — AC)? = |D|},

(9) A%C + AC? + 8B —6ABC > 0.
Claim 0.3. % is uniformly bounded on C™ x [0,T].

Proof of Claim. The crucial observation is that z — %3 = O(z%) and % —1-—_L— =0(%

Vi

w\?B—C\

when z small, which gives is bounded when z small.

Indeed, v = 2% + o (0)] zt —|—O )and /14 (F')2 =1+ L 2(0)2x —|—O( 3), then one can

check that 2,/1 + (F —p\/l—i- F')?2 — % =0(2*) and 1 — _ (O)]x + O(23).
On the other hand, Cc > % for x large leads to % is bounded outside a compact set of
C™. In fact,
2B —
(10) im 2B C_

r—+00 Cv

It follows from (7) that
d—umln t 1 3 ! ! ! QC 1
aptmn® s Lo gy WIS )
dt P32 arop? ardp?z (arg)?202  (arg)?e>2

where C1, Cy and Cj are all constants depending only on the g(t) restricted to a compact subset

C" x [0, 7.
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On the other hand, the choice of the point (21, 1) implies di“gi';"(t) < 0. We conclude that

lu(z1,t1)] < aCTZ + (afs)Q. Therefore, we have
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(12) D(zo,t0) > u(wy,t1) > [aro + (aro)?

.

Now let a goes to infinity, we get D(zo, o) > 0, which contradicts to the choice of (2, o).
O




